

Single-Carrier Digital Transmission

• Baseband:

$$s(t) = \sum_{k=0}^{N-1} s_k p(t - kT_s)$$

$$p(t) = l_{[0,T_s)}(t) = \begin{cases} 1, & t \in [0,T_s) \\ 0, & \text{otherwise.} \end{cases}$$

• Passband:

Review: Multipath Propagation

- In a wireless mobile communication system, a transmitted signal propagating through the wireless channel often encounters multiple reflective paths until it reaches the receiver
- We refer to this phenomenon as **multipath propagation** and it causes fluctuation of the amplitude and phase of the received signal.
- We call this fluctuation multipath fading.

44

Wireless Comm. and Multipath Fading

Observation and a Solution

- Observation: Delay spread causes ISI
- A general rule of thumb is that a delay spread of less than 5 or 10 times the symbol width will not be a significant factor for ISI.
- Solution: The ISI can be mitigated by reducing the symbol rate and/or including sufficient guard times between symbols.

Multi-Carrier Transmission

- Convert a serial high rate data stream on to **multiple parallel low rate** sub-streams.
- Each sub-stream is modulated on its own **sub-carrier**.
- <u>Time domain perspective</u>: Since the symbol rate on each sub-carrier is much less than the initial serial data symbol rate, the effects of delay spread, i.e. ISI, significantly decrease, reducing the complexity of the equalizer.

Frequency Division Multiplexing (FDM)

- To facilitate separation of the signals at the receiver, the carrier frequencies were **spaced sufficiently far apart** so that the signal spectra did not overlap. Empty spectral regions between the signals assured that they could be separated with readily realizable filters.
- The resulting spectral efficiency was therefore quite low.

Single Carrier vs. Multi-Carrier (FDM)

Single Carrier	Multi-Carrier (FDM)
Single higher rate serial scheme	Parallel scheme. Each of the parallel subchannels can carry a low signaling rate, proportional to its bandwidth.
 Multipath problem: Far more susceptible to inter-symbol interference (ISI) due to the short duration of its signal elements and the higher distortion produced by its wider frequency band Complicated equalization 	 Long duration signal elements and narrow bandwidth in sub-channels. Complexity problem: If built straightforwardly as several (<i>N</i>) transmitters and receivers, will be more costly to implement. BW efficiency problem: The sum of parallel signalling rates is less than can be carried by a single serial channel of that combined bandwidth because of the unused guard space between the parallel subcarriers.

OFDM

- **O**FDM = **Orthogonal** frequency division multiplexing
- One of multi-carrier modulation (MCM) techniques
 - Parallel data transmission (of many sequential streams)
 - A broadband is divided into many narrow sub-channels
 - Frequency division multiplexing (FDM)
- High spectral efficiency
 - The sub-channels are made **orthogonal** to each other over the **OFDM symbol duration** T_s .
 - Spacing is carefully selected.
 - Allow the sub-channels to overlap in the frequency domain.
 - Sub-carriers are spaced as close as theoretically possible.

54

OFDM and CDMA: Waveform Version

• Recall: Orthogonality-Based MA (CDMA)

$$s(t) = \sum_{k=0}^{\ell-1} S_k c_k(t) \quad \text{where} \quad c_{k_1} \perp c_{k_2}$$

• Baseband OFDM modulated symbol:

$$s(t) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_k \exp\left(j\frac{2\pi kt}{T_s}\right), \quad 0 \le t \le T_s$$
$$= \sum_{k=0}^{N-1} S_k \frac{1}{\sqrt{N}} \mathbb{1}_{[0,T_s]}(t) \exp\left(j\frac{2\pi kt}{T_s}\right)$$

Another "special case" of CDMA!

OFDM: Orthogonality

$$\int c_{k_1}(t) c_{k_2}^*(t) dt = \int_0^{T_s} \exp\left(j\frac{2\pi k_1 t}{T_s}\right) \exp\left(-j\frac{2\pi k_2 t}{T_s}\right) dt$$
$$= \int_0^{T_s} \exp\left(j\frac{2\pi (k_1 - k_2)t}{T_s}\right) dt = \begin{cases} T_s, & k_1 = k_2\\ 0, & k_1 \neq k_2 \end{cases}$$

When
$$k_1 = k_2$$
,

$$\int c_{k_1}(t) c_{k_2}^*(t) dt = \int_0^{T_s} 1 dt = T_s$$
When $k_1 \neq k_2$,

$$\int c_{k_1}(t) c_{k_2}^*(t) dt = \frac{T_s}{j2\pi(k_1 - k_2)} \exp\left(j\frac{2\pi(k_1 - k_2)t}{T_s}\right) \Big|_0^{T_s}$$

$$= \frac{T_s}{j2\pi(k_1 - k_2)} (1 - 1) = 0$$

Frequency Spectrum

$$s(t) = \sum_{k=0}^{N-1} S_k \frac{1}{\sqrt{N}} \mathbb{1}_{[0,T_s]} (h \exp\left(j\frac{2\pi kt}{T_s}\right) - \Delta f = \frac{1}{T_s} \Delta f = \frac{1}{T_s}$$

$$\frac{1}{\left[\frac{T_s}{T_s}\right]} (t) \xrightarrow{\mathcal{F}} T_s \operatorname{sinc}(\pi T_s f) + \Delta f = \frac{1}{T_s} \Delta f = \frac{1}{T_s}$$

$$c(t) = \frac{1}{\sqrt{N}} \mathbb{1}_{[0,T_s]} (t) \xrightarrow{\mathcal{F}} C(f) = \frac{1}{\sqrt{N}} T_s e^{-j2\pi f\frac{T_s}{2}} \operatorname{sinc}(\pi T_s f)$$

$$c_k(t) = c(t) \exp\left(j\frac{2\pi kt}{T_s}\right) \xrightarrow{\mathcal{F}} C_k(f) = C\left(f - \frac{k}{T_s}\right) = C(f - k\Delta f)$$

$$s(t) = \sum_{k=0}^{N-1} S_k c_k(t) \xrightarrow{\mathcal{F}} S(f) = \sum_{k=0}^{N-1} S_k C_k(f)$$

$$= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_k e^{-j2\pi (f - k\Delta f)\frac{T_s}{2}} T_s \operatorname{sinc}(\pi T_s(f - k\Delta f))$$

Normalized Power Density Spectrum

Summary

- So, we have a scheme which achieves
 - Large symbol duration (T_s) and hence less multipath problem
 - Good spectral efficiency
- One more problem:
 - There are so many carriers!

Discrete Fourier Transform (DFT)

Transmitter produces

$$s(t) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_k \exp\left(j\frac{2\pi k}{T_s}t\right), \quad 0 \le t < T_s$$

Sample the signal in time domain every T_s/N gives

$$s[n] = s\left(n\frac{T_s}{N}\right) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_k \exp\left(j\frac{2\pi k}{T_s'}n\frac{T_s'}{N}\right)$$
$$= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_k \exp\left(j\frac{2\pi kn}{N}\right) = \sqrt{N} \operatorname{IDFT}\left\{S\right\}[n]$$
where $\operatorname{IDFT}\left\{\bar{s}\right\}[n] = \frac{1}{N} \sum_{k=0}^{N-1} S_k \exp\left(j\frac{2\pi kn}{N}\right)$
$$\bar{s} = (s_0 - s_1 - \cdots - s_{N-1})^T$$

We can implement OFDM in the discrete domain!

68

Oversampling (2)

- Increase the number of sample points from N to LN on the interval $[0, T_s]$.
- *L* is called the **over-sampling factor**.

$$s[n] = s\left(n\frac{T_s}{N}\right)$$

$$0 \le n < N$$

$$s^{(L)}[n] = s\left(n\frac{T_s}{LN}\right)$$

$$0 \le n < LN$$

$$s^{(L)}[n] = s\left(n\frac{T_s}{LN}\right)$$

$$0 \le n < LN$$

$$0 \le n < LN$$

$$s^{(L)}[n] = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_k \exp\left(j\frac{2\pi kn}{LN}\right) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} S_k \exp\left(j\frac{2\pi kn}{LN}\right)$$

$$= \frac{1}{\sqrt{N}} LN\left(\frac{1}{LN} \sum_{k=0}^{N-1} S_k \exp\left(j\frac{2\pi kn}{LN}\right)\right)$$

$$= L\sqrt{N}\left(\frac{1}{LN} \sum_{k=0}^{N-1} \tilde{S}_k \exp\left(j\frac{2\pi kn}{LN}\right)\right) = L\sqrt{N} \operatorname{IDFT}\{\tilde{S}[n]$$

$$Scaling$$

Summary: Three steps towards modern OFDM

- To mitigate multipath problem
 → Use multicarrier modulation (FDM)
- 2. To gain spectral efficiency
 → Use orthogonality of the carriers
- 3. To achieve efficient implementation
 → Use FFT and IFFT